Variation in Carbon Storage and Its Distribution by Stand Age and Forest Type in Boreal and Temperate Forests in Northeastern China

نویسندگان

  • Yawei Wei
  • Maihe Li
  • Hua Chen
  • Bernard J. Lewis
  • Dapao Yu
  • Li Zhou
  • Wangming Zhou
  • Xiangmin Fang
  • Wei Zhao
  • Limin Dai
چکیده

The northeastern forest region of China is an important component of total temperate and boreal forests in the northern hemisphere. But how carbon (C) pool size and distribution varies among tree, understory, forest floor and soil components, and across stand ages remains unclear. To address this knowledge gap, we selected three major temperate and two major boreal forest types in northeastern (NE) China. Within both forest zones, we focused on four stand age classes (young, mid-aged, mature and over-mature). Results showed that total C storage was greater in temperate than in boreal forests, and greater in older than in younger stands. Tree biomass C was the main C component, and its contribution to the total forest C storage increased with increasing stand age. It ranged from 27.7% in young to 62.8% in over-mature stands in boreal forests and from 26.5% in young to 72.8% in over-mature stands in temperate forests. Results from both forest zones thus confirm the large biomass C storage capacity of old-growth forests. Tree biomass C was influenced by forest zone, stand age, and forest type. Soil C contribution to total forest C storage ranged from 62.5% in young to 30.1% in over-mature stands in boreal and from 70.1% in young to 26.0% in over-mature in temperate forests. Thus soil C storage is a major C pool in forests of NE China. On the other hand, understory and forest floor C jointly contained less than 13% and <5%, in boreal and temperate forests respectively, and thus play a minor role in total forest C storage in NE China.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plant Debris and Its Contribution to Ecosystem Carbon Storage in Successional Larix gmelinii Forests in Northeastern China

Plant debris, including woody debris and litter, is an essential but frequently overlooked component of carbon (C) storage in forest ecosystems. Here, we examined the C storage of plant debris and its contribution to total ecosystem C storage in an age sequence of six larch (Larix gmelinii) forest stands (15, 36, 45, 54, 65, and 138 years old) in northeastern China. The plant debris C storage i...

متن کامل

Tree Diversity Enhances Stand Carbon Storage but Not Leaf Area in a Subtropical Forest

Research about biodiversity-productivity relationships has focused on herbaceous ecosystems, with results from tree field studies only recently beginning to emerge. Also, the latter are concentrated largely in the temperate zone. Tree species diversity generally is much higher in subtropical and tropical than in temperate or boreal forests, with reasons not fully understood. Niche overlap and t...

متن کامل

Determination of Stand Properties in Boreal and Temperate Forests Using High-Resolution Imagery

The existence of a relatively long (ca. 40 yr) satellite imagery archive for examination of potential worldwide forest change motivated an inspection of the relation between forest features observable from higher resolution airborne and satellite imagery and measures of forest biomass, height, and age. Using these data, we inspected the relation between stand age, mean diameter, height, and sta...

متن کامل

Carbon allocation in boreal black spruce forests across regions varying in soil temperature and precipitation

A common hypothesis for northern ecosystems is that low soil temperatures inhibit plant productivity. To address this hypothesis, we reviewed how separate components of ecosystem carbon (C) cycling varied along a soil temperature gradient for nine welldrained, relatively productive boreal black spruce (Picea marianaMill. [B.S.P.]) forests in Alaska, USA, and Saskatchewan and Manitoba, Canada. A...

متن کامل

Carbon allocation in boreal black spruce forests across regions varying in soil temperature and precipitation

A common hypothesis for northern ecosystems is that low soil temperatures inhibit plant productivity. To address this hypothesis, we reviewed how separate components of ecosystem carbon (C) cycling varied along a soil temperature gradient for nine welldrained, relatively productive boreal black spruce (Picea mariana Mill. [B.S.P.]) forests in Alaska, USA, and Saskatchewan and Manitoba, Canada. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013